21 research outputs found

    Is Childhood Obesity Associated with Bone Density and Strength in Adulthood?

    Get PDF
    Associations between childhood obesity and adult bone traits were assessed among 62 obese premenopausal women, of which 12 had been obese since childhood (ObC), and 50 had gained excess weight in adulthood (ObA). Body composition and bone mineral content (BMC) of the total body, spine, and proximal femur were assessed with DXA. Total cross-sectional area and cortical (diaphyseal CoD) and trabecular (epiphyseal TrD) bone density of the radius and tibia were measured with pQCT. Compared to ObA-group, ObC-group was 5.2 cm taller having 2.5 and 3.5 kg more lean and fat mass, respectively. Depending on the statistical adjustment, ObC-group had 5–10% greater TrD both in tibia and in radius. The remaining bone traits did not significantly differ between the groups. Current preliminary observations bring up an interesting question whether childhood obesity can result in denser trabecular bone in adulthood. However, prudence must be exercised in the statistical adjustment

    Targeted exercise against osteoporosis: A systematic review and meta-analysis for optimising bone strength throughout life

    Get PDF
    Background. Exercise is widely recommended to reduce osteoporosis, falls and related fragility fractures, but its effect on whole bone strength has remained inconclusive. The primary purpose of this systematic review and meta-analysis was to evaluate the effects of long-term supervised exercise (≥6 months) on estimates of lower-extremity bone strength from childhood to older age. Methods. We searched four databases (PubMed, Sport Discus, Physical Education Index, and Embase) up to October 2009 and included 10 randomised controlled trials (RCTs) that assessed the effects of exercise training on whole bone strength. We analysed the results by age groups (childhood, adolescence, and young and older adulthood) and compared the changes to habitually active or sedentary controls. To calculate standardized mean differences (SMD; effect size), we used the follow-up values of bone strength measures adjusted for baseline bone values. An inverse variance-weighted random-effects model was used to pool the results across studies. Results. Our quality analysis revealed that exercise regimens were heterogeneous; some trials were short in duration and small in sample size, and the weekly training doses varied considerably between trials. We found a small and significant exercise effect among pre- and early pubertal boys [SMD, effect size, 0.17 (95% CI, 0.02-0.32)], but not among pubertal girls [-0.01 (-0.18 to 0.17)], adolescent boys [0.10 (-0.75 to 0.95)], adolescent girls [0.21 (-0.53 to 0.97)], premenopausal women [0.00 (-0.43 to 0.44)] or postmenopausal women [0.00 (-0.15 to 0.15)]. Evidence based on per-protocol analyses of individual trials in children and adolescents indicated that programmes incorporating regular weight-bearing exercise can result in 1% to8% improvements in bone strength at the loaded skeletal sites. In premenopausal women with high exercise compliance, improvements ranging from 0.5% to 2.5% have been reported. Conclusions. The findings from our meta-analysis of RCTs indicate that exercise can significantly enhance bone strength at loaded sites in children but not in adults. Since few RCTs were conducted to investigate exercise effects on bone strength, there is still a need for further well-designed, long-term RCTs with adequate sample sizes to quantify the effects of exercise on whole bone strength and its structural determinants throughout life.peerReviewe

    A 2-Year Follow-Up After a 2-Year RCT with Vitamin D and Exercise : Effects on Falls, Injurious Falls and Physical Functioning Among Older Women

    Get PDF
    Background: Both exercise and vitamin D are recommended means to prevent falls among older adults, but their combined effects on fallinduced injuries are scarcely studied. Methods: A 2-year follow-up of a previous 2-year randomized controlled trial with vitamin D and exercise (Ex) of 409 older home-dwelling women using a factorial 2 x 2 design (D(-)Ex(-), D(+)Ex(-), D(-)Ex(+), D(+)Ex(+)). Besides monthly fall diaries, femoral neck bone mineral density (fn-BMD), and physical functioning were assessed at 1 and 2 years after the intervention. Results: After the intervention, S-25OHD concentrations declined to baseline levels in both supplement groups. The groups did not differ for change in fn-BMD or physical functioning, except for leg extensor muscle strength, which remained about 10% greater in the exercise groups compared with the reference group (D(-)Ex(-)). There were no between-group differences in the rate of all falls, but medically attended injurious falls reduced in D+ Ex-and D(-)Ex(+) groups compared with D(-)Ex(-). However, all former treatment groups had less medically attended injured fallers, HRs (95% CI) being 0.62 (0.39-1.00) for D+ Ex-, 0.46 (0.28-0.76) for D(-)Ex(+), and 0.55 (0.34-0.88) for D(+)Ex(+), compared with D(-)Ex(-). Conclusions: Exercise-induced benefits in physical functioning partly remained 2 years after cessation of supervised training. Although there was no difference in the rate of all falls, former exercise groups continued to have lower rate of medically attended injured fallers compared with referents even 2 years after the intervention. Vitamin D without exercise was associated with less injurious falls with no difference in physical functioning.Peer reviewe

    Calcium – a scoping review for Nordic Nutrition Recommendations 2023

    No full text
    The aim of this scoping review was to conduct evidence-based documentations between calcium (Ca) intake and health outcomes for updating dietary reference values (DRVs) and food-based dietary guidelines (FBDGs) in the sixth edition of Nordic Nutrient Recommendations (NNR2023). The systematic literature search was limited to reviews on human data published between 2011 and June 2021. Systematic reviews (SRs) and original publications of relevance for this scoping review were included. A common practice of designing studies on health outcomes related to Ca supplement intake is to examine combined Ca and vitamin D, and therefore, a combination of Ca with vitamin D (CaD) was included in this review. In total, 27 studies addressing the association between dietary or supplemental Ca on bone health, bone mineral density (BMD), pregnancy-related outcomes, cardiovascular diseases (CVD), cancers, obesity, and mortality were reviewed. SRs showed that both dietary and supplemental Ca intakes were positively associated with BMD, but evidence did not support the benefit in fracture prevention. Current evidence did not support that Ca or CaD supplementation increases risk of coronary heart disease or all-cause mortality in older adults, but that Ca may be beneficial for hypertension, especially in young people. Increasing Ca intake may be beneficial during pregnancy, especially for those at high risk of pre-eclampsia due to ethnicity, age, high BMI, and those with low baseline Ca intake. The associations between high Ca intake and cancers were varied, with strong evidence that high consumption of dairy products is protective against colorectal cancer and limited-suggestive evidence that dairy products and diets high in Ca might also be protective against breast cancer. Moreover, there is limited-suggestive evidence that dairy products and diets high in Ca increase the risk of prostate cancer. Based on current evidence, Ca intake is beneficial or neutral in relation to most of the outcomes evaluated in this review. Data from the Nordic countries show that average Ca intake is around the same as previously recommended by NNR. However, the average Ca intake in the Baltic countries is below the recommendations

    Access to

    No full text
    Associations between childhood obesity and adult bone traits were assessed among 62 obese premenopausal women, of which 12 had been obese since childhood (ObC), and 50 had gained excess weight in adulthood (ObA). Body composition and bone mineral content (BMC) of the total body, spine, and proximal femur were assessed with DXA. Total cross-sectional area and cortical (diaphyseal CoD) and trabecular (epiphyseal TrD) bone density of the radius and tibia were measured with pQCT. Compared to ObA-group, ObC-group was 5.2 cm taller having 2.5 and 3.5 kg more lean and fat mass, respectively. Depending on the statistical adjustment, ObC-group had 5-10% greater TrD both in tibia and in radius. The remaining bone traits did not significantly differ between the groups. Current preliminary observations bring up an interesting question whether childhood obesity can result in denser trabecular bone in adulthood. However, prudence must be exercised in the statistical adjustment
    corecore